Meninjau Peranan Text Mining sebagai Alat Strategis dalam Industri Kreatif melalui Sajian Webinar
DOI:
https://doi.org/10.35960/pimas.v4i3.1868Abstract
The growth of unstructured data has been triggering a big data explosion. About 90 percent of the current unstructured data has not been fully analyzed so that cannot be used for valuable new information. Text mining can process text data to be extracted into new knowledge, identify significant patterns, and find hidden correlations. The use of text mining can be applied to various themes such as encouraging creativity in industry, society, and researchers by focusing on exploration versus exploitation strategies in crowdsourcing contests by utilizing data from proposals to make close and distance classifications between proposals, analyze sentiment tone on product launch announcements or creative economy programs and make correlations with sales data or public interest in a post-launch program, performing software lifecycle management by leveraging new ideas from users/customers such as Google reviews to create clusters of topics discussed in the comment section, and combining a topic-search approach and language style that can make a successful Kickstarter campaign. In this article, the author discusses the definition, process, application, and integration of text mining in the context of encouraging the creative industry to innovate further.
References
Heeg, Robert. (2023). Possibilities and limitations, of unstructured data. Dipetik Mei 01, 2025, dari https://researchworld.com/articles/possibilities-and-limitations-of-unstructured-data#:~:text=According%20to%20Gartner%2C%20unstructured%20data%20represents%20an%20estimated,it%27s%20growing%20three%20times%20faster%20than%20structured%20data
Antons, D., Grünwald, E., Cichy, P., & Salge, T. O. (2020). The application of text mining methods in innovation research: current state, evolution patterns, and development priorities. R and D Management, 50(3), 329–351. https://doi.org/10.1111/radm.12408.
O’Reilly, Michael. (2022) The Unseen Data Conundrum. Dipetik Mei 01, 2025, dari https://www.forbes.com/councils/forbestechcouncil/2022/02/03/the-unseen-data-conundrum/
Hassani, H., Beneki, C., Unger, S., Mazinani, M. T., & Yeganegi, M. R. (2020). Text mining in big data analytics. Big Data and Cognitive Computing, 4(1), 1–34. https://doi.org/10.3390/bdcc4010001.
Rizki Maulana Yusuf Abdullah. (2023). Ekonomi Kreatif dan Potensi Pertumbuhan Ekonomi Berbasis Industri Kreatif. JMEB: Jurnal Manajemen Ekonomi & Bisnis, 1(2), 60–69. https://doi.org/10.59561/jmeb.v1i2.155
Supinardi, B., & Purwantoro, N. (2024). Analisis Bibliometrik Industri Kreatif Berkelanjutan di Indonesia. JURNAL EKONOMI DAN BISNIS DIGITAL (EKOBIL), 3(2), 23–31. https://doi.org/10.58765/ekobil.v3i2.180
Badan Pariwisata dan Ekonomi Kreatif (n.d.). Subsektor Ekonomi Kreatif. Dipetik Mei 01, 2025 dari https://kemenparekraf.go.id/layanan/Subsektor-Ekonomi-Kreatif
Topor, D. R., & Budson, A. E. (2020). Twelve tips to present an effective webinar. Medical Teacher, 42(11), 1216–1220. https://doi.org/10.1080/0142159X.2020.1775185
Kobayashi, V. B., Mol, S. T., Berkers, H. A., Kismihók, G., & den Hartog, D. N. (2018). Text Mining in Organizational Research. Organizational Research Methods, 21(3), 733–765. https://doi.org/10.1177/1094428117722619
Hotho, A., Nürnberger, A., & Paaß, G. (2005). A brief survey of text mining. Journal for Language Technology and Computational Linguistics, 20(1), 19-62. https://publica.fraunhofer.de/handle/publica/208990
Maulana, H., et.al., (2025). Developing Halal Tourism through Stakeholder Engagement and Capacity Building. Jurnal Pengabdian Bakti Akademisi, 2(2). 115-123. https://doi.org/10.24815/jpba.v2i2.46295
Feizollah, A., Mostafa, M.M., Sulaiman, A. et al. (2021). Exploring halal tourism tweets on social media. J Big Data 8, 72. https://doi.org/10.1186/s40537-021-00463-5
Mayor, E., Miani, A (2023). A topic models analysis of the news coverage of the Omicron variant in the United Kingdom press. BMC Public Health 23, 1509. https://doi.org/10.1186/s12889-023-16444-7
Ahmad Fathan Hidayatullah et al (2021). Indonesia Infrastructure Development Topic Discovery on Online News with Latent Dirichlet Allocation. IOP Conf. Ser.: Mater. Sci. Eng. 1077 012012. https://iopscience.iop.org/article/10.1088/1757-899X/1077/1/012012
C. J. Hellín, A. Valledor, J. J. Cuadrado-Gallego, A. Tayebi and J. Gómez, "A Comparative Study on R Packages for Text Mining," in IEEE Access, vol. 11, pp. 99083-99100, 2023, doi: 10.1109/ACCESS.2023.3310818
Salam, M., Awang Iskandar, D.N., Ibrahim, D.H.A. et al. Service learning in higher education: a systematic literature review. Asia Pacific Educ. Rev. 20, 573–593 (2019). https://doi.org/10.1007/s12564-019-09580-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Lukmanul Hakim, Ari Peryanto, Dwi Susanto, Yuwono Fitri Widodo (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.