Deteksi Lesi Cacar Monyet pada Citra Dermatologi Menggunakan Metode YOLOv7
DOI:
https://doi.org/10.35960/ikomti.v6i3.2015Keywords:
YOLOv7, object detection, monkeypox, chickenpox, cowpox, dermatological imagesAbstract
Monkeypox is an infectious disease characterized by skin lesions that are often difficult to distinguish from other pox-related conditions, which complicates diagnosis in resource-limited settings. This study aims to implement YOLOv7 for detecting monkeypox lesions in dermatological images and to evaluate its accuracy. The dataset consisted of 1,500 annotated images resized to 512×512 pixels, monkeypox was used as the target class, while chickenpox and cowpox were included as comparison/non-target classes to support the differentiation of lesions during model training and evaluation. The YOLOv7 model was trained for 50 epochs using default configurations and a transfer learning approach, with a data split of 70% for training, 20% for validation, and 10% for testing. Training results showed an mAP@0.5 of 89.1% and an mAP@0.5:0.95 of 59.2%. Meanwhile, on the testing stage using original (non-augmented) data, the model performance decreased, achieving an mAP@0.5 of 75.3% and an mAP@0.5:0.95 of 44.9%.
References
[1] S. Bin, G. Sun, and C.-C. Chen, “Spread of Infectious Disease Modeling and Analysis of Different Factors on Spread of Infectious Disease Based on Cellular Automata,” Int J Environ Res Public Health, vol. 16, no. 23, p. 4683, Nov. 2019, doi: 10.3390/ijerph16234683.
[2] N. F. Ahmad, “PELAKSANAAN PENCEGAHAN DAN PENGENDALIAN INFEKSI (PPI) DI PUSKESMAS TEMANGGUNG SELAMA MASA PANDEMI COVID-19,” Jurnal Kesehatan Masyarakat, vol. 11, no. 5, Sep. 2023, doi: 10.14710/jkm.v11i5.37073.
[3] W. Garira and B. Maregere, “The transmission mechanism theory of disease dynamics: Its aims, assumptions and limitations,” Infect Dis Model, vol. 8, no. 1, pp. 122–144, Mar. 2023, doi: 10.1016/j.idm.2022.12.001.
[4] M. Kes Jummu Huwriyati et al., EPIDEMIOLOGI PENYAKIT MENULAR PENERBIT CV.EUREKA MEDIA AKSARA. EUREKA MEDIA AKSARA, 2023.
[5] L. Budiyarto, A. A. Sabila, and H. C. Putri, “INFEKSI CACAR MONYET (MONKEYPOX),” Jurnal Medika Utama, vol. 04, no. 02, pp. 65–76, Jan. 2023, [Online]. Available: http://jurnalmedikahutama.com
[6] A. Sorayaie Azar, A. Naemi, S. Babaei Rikan, J. Bagherzadeh Mohasefi, H. Pirnejad, and U. K. Wiil, “Monkeypox detection using deep neural networks,” BMC Infect Dis, vol. 23, no. 1, p. 438, Jun. 2023, doi: 10.1186/s12879-023-08408-4.
[7] Spencer Kimball, “WHO says mpox outbreak, the largest in history, no longer global health emergency,” CNBC. Accessed: Dec. 23, 2024. [Online]. Available: https://www.cnbc.com/2023/05/11/mpox-who-says-outbreak-no-longer-global-health-emergency.html
[8] WHO, “Multi-country monkeypox outbreak: situation update,” www.who.int. Accessed: Sep. 13, 2024. [Online]. Available: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON396
[9] WHO, “2022-24 Mpox (Monkeypox) Outbreak: Global Trends,” WHO. Accessed: Dec. 23, 2024. [Online]. Available: https://worldhealthorg.shinyapps.io/mpx_global/
[10] Our World in Data, “Mpox: Cumulative confirmed and suspected cases, World,” Our World in Data. Accessed: Dec. 23, 2024. [Online]. Available: https://ourworldindata.org/explorers/monkeypox?time=2022-05-24..latest&Metric=Confirmed+and+suspected+cases&Frequency=Cumulative&Relative+to+population=false&country=~OWID_WRL
[11] Y. C. How, A. F. Ab. Nasir, K. F. Muhammad, A. P. P. Abdul Majeed, M. A. Mohd Razman, and M. A. Zakaria, “Glove Defect Detection Via YOLO V5,” MEKATRONIKA, vol. 3, no. 2, pp. 25–30, Jan. 2022, doi: 10.15282/mekatronika.v3i2.7342.
[12] S. N. Ali et al., “Monkeypox Skin Lesion Detection Using Deep Learning Models: A Feasibility Study,” 2023. [Online]. Available: https://monkey-pox-detector-mhealthlab.herokuapp.com/
[13] S.-C. Wang, C.-T. Tang, S.-M. Huang, and S.-Y. Wang, “Simulation Analysis and Optimization of Electromagnetic Vibration and Noise of Permanent Magnet Motor,” Journal of Vibration Engineering & Technologies, 2024, doi: 10.1007/s42417-023-01257-0.
[14] J. R. Terven and D. M. Cordova-Esparaza, “A COMPREHENSIVE REVIEW OF YOLO: FROM YOLOV1 TO YOLOV8 AND BEYOND UNDER REVIEW IN ACM COMPUTING SURVEYS,” 2023.
[15] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,” arXiv preprint, 2022.
[16] F. Uysal, “Detection of Monkeypox Disease from Human Skin Images with a Hybrid Deep Learning Model,” Diagnostics, vol. 13, no. 10, p. 1772, May 2023, doi: 10.3390/diagnostics13101772.
[17] P. C. Kusuma and B. Soewito, “Multi-Object Detection Using YOLOv7 Object Detection Algorithm on Mobile Device,” Journal of Applied Engineering and Technological Science (JAETS), vol. 5, no. 1, pp. 305–320, Dec. 2023, doi: 10.37385/jaets.v5i1.3207.
[18] D. Datta, H. Prakash, and P. Singh, “Skin Cancer Detection with Edge Devices Using YOLOv7 Deep CNN,” pp. 55–63, 2023, doi: 10.1007/978-981-99-6550-2_5.
[19] N. A. AlSadhan, S. A. Alamri, M. M. Ben Ismail, and O. Bchir, “Skin Cancer Recognition Using Unified Deep Convolutional Neural Networks,” Cancers (Basel), vol. 16, no. 7, p. 1246, Mar. 2024, doi: 10.3390/cancers16071246.
[20] V. Varbanova and P. Beutels, “Recent quantitative research on determinants of health in high income countries: A scoping review,” PLoS One, vol. 15, no. 9, p. e0239031, Sep. 2020, doi: 10.1371/journal.pone.0239031.
[21] E. M. Bunge et al., “The changing epidemiology of human monkeypox—A potential threat? A systematic review,” PLoS Negl Trop Dis, vol. 16, no. 2, p. e0010141, Feb. 2022, doi: 10.1371/journal.pntd.0010141.
[22] E. M. Beer and V. B. Rao, “A systematic review of the epidemiology of human monkeypox outbreaks and implications for outbreak strategy,” PLoS Negl Trop Dis, vol. 13, no. 10, p. e0007791, Oct. 2019, doi: 10.1371/journal.pntd.0007791.
[23] E. Elyan et al., “Computer vision and machine learning for medical image analysis: recent advances, challenges, and way forward,” Artificial Intelligence Surgery, 2022, doi: 10.20517/ais.2021.15.
[24] H. Cui, L. Hu, and L. Chi, “Advances in Computer-Aided Medical Image Processing,” Applied Sciences, vol. 13, no. 12, p. 7079, Jun. 2023, doi: 10.3390/app13127079.
[25] D. N. Triwibowo, E. Utami, Sukoco, and S. Raharjo, “Analysis of Classification and Calculation of Vehicle Type at APILL Intersection Using YOLO Method and Kalman Filter,” in 2021 3rd International Conference on Cybernetics and Intelligent System (ICORIS), IEEE, Oct. 2021, pp. 1–6. doi: 10.1109/ICORIS52787.2021.9649607.
[26] M. Hussain, “YOLOV5, YOLOV8 AND YOLOV10: THE GO-TO DETECTORS FOR REAL-TIME VISION,” arXiv preprint, 2024.
[27] R. Umar, I. Riadi, and P. Purwono, “Klasifikasi Kinerja Programmer pada Aktivitas Media Sosial dengan Metode Stochastic Gradient Descent,” JOINTECS (Journal of Information Technology and Computer Science), vol. 5, no. 2, p. 55, May 2020, doi: 10.31328/jointecs.v5i2.1324.
[28] Wang Li, Shu Xin, Zhang Wei, and Chen Yunfang, Big Data and Security, vol. 1210. in Communications in Computer and Information Science, vol. 1210. Singapore: Springer Singapore, 2020. doi: 10.1007/978-981-15-7530-3.
[29] R. Padilla, S. L. Netto, and E. A. B. da Silva, “A Survey on Performance Metrics for Object-Detection Algorithms,” in 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), IEEE, Jul. 2020, pp. 237–242. doi: 10.1109/IWSSIP48289.2020.9145130.
[30] Joydip Paul, TensorKitty, Md Tazuddin Ahmed, and Tasnim Jahan Peana, “Monkeypox Skin Lesion Dataset,” Kaggle. Accessed: Nov. 14, 2024. [Online]. Available: https://www.kaggle.com/datasets/joydippaul/mpox-skin-lesion-dataset-version-20-msld-v20?select=Original+Images
[31] WongKinYiu, “yolov7,” GitHub. Accessed: Jul. 04, 2025. [Online]. Available: https://github.com/WongKinYiu/yolov7
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ali Sya'bana Syukurillah, Anggit Wirasto, Retno Agus Setiawan (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.







