Revolusi Kesehatan Digital: Peran AI dan Pembelajaran Mesin dalam Diagnosa Perawatan
Keywords:
Kecerdasan Buatan, Pembelajaran Mesin, Diagnostik Medis, Data Kesehatan, Perawatan yang DipersonalisasiAbstract
Pemanfaatan Kecerdasan Buatan (Artificial Intelligence/AI) dan Pembelajaran Mesin (Machine Learning/ML) semakin berkembang dalam sistem kesehatan modern, khususnya dalam meningkatkan akurasi diagnosis, perencanaan perawatan, dan pengelolaan data medis. Kajian tinjauan naratif ini bertujuan untuk merangkum bukti ilmiah terkini mengenai penerapan AI dan ML dalam diagnosis medis dan layanan perawatan. Pencarian literatur dilakukan melalui database ScienceDirect, IEEE Xplore, dan SpringerLink, dengan fokus pada studi yang membahas diagnostik berbasis AI, pemodelan prediktif, serta sistem pendukung keputusan klinis. Sebanyak 15 artikel relevan yang terbit pada rentang tahun 2015 hingga 2024 disertakan berdasarkan kesesuaian topik dan kualitas metodologis. Hasil kajian menunjukkan bahwa AI dan ML memberikan manfaat besar dalam diagnosis berbasis citra, interpretasi data genomik, manajemen penyakit kronis, serta prediksi risiko klinis. Beberapa studi bahkan melaporkan tingkat akurasi diagnosis yang menyamai atau melampaui tenaga medis manusia. Namun, tantangan tetap muncul, termasuk bias algoritma, isu privasi data, serta keterbatasan infrastruktur kesehatan terutama di negara berkembang. Kajian ini menyimpulkan bahwa integrasi AI dalam layanan kesehatan membutuhkan kolaborasi erat antara tenaga medis dan pengembang teknologi, disertai pengawasan etis dan regulasi yang kuat. Dengan implementasi yang bertanggung jawab, AI dan ML berpotensi besar mendorong peningkatan presisi diagnosis, optimalisasi jalur perawatan, serta penguatan ekosistem kesehatan digital di masa depan.
References
Alzghoul, B. (2024). Impact Of Artificial Intelligence On Healthcare Quality: A Systematic Review And Meta-Analysis. The Open Public Health Journal, 17(1). Https://Doi.Org/10.2174/0118749445181059240201054546
Ardila, D., Kiraly, A. P., Bharadwaj, S., Choi, B., Reicher, J. J., Peng, L., Tse, D., Etemadi, M., Ye, W., Corrado, G., Naidich, D. P., & Shetty, S. (2019). End-To-End Lung Cancer Screening With Three-Dimensional Deep Learning On Low-Dose Chest Computed Tomography. Nature Medicine, 25(6), 954–961. Https://Doi.Org/10.1038/S41591-019-0447-X
Azaria, A., Ekblaw, A., Vieira, T., & Lippman, A. (2016). Medrec: Using Blockchain For Medical Data Access And Permission Management. Proceedings - 2016 2nd International Conference On Open And Big Data, OBD 2016, 25–30. Https://Doi.Org/10.1109/OBD.2016.11
Davenport, T., & Kalakota, R. (2019). DIGITAL TECHNOLOGY The Potential For Artificial Intelligence In Healthcare. In Future Healthcare Journal (Vol. 6, Issue 2).
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-Level Classification Of Skin Cancer With Deep Neural Networks. Nature, 542(7639), 115–118. Https://Doi.Org/10.1038/Nature21056
Francisca Chibugo Udegbe, Ogochukwu Roseline Ebulue, Charles Chukwudalu Ebulue, & Chukwunonso Sylvester Ekesiobi. (2024). THE ROLE OF ARTIFICIAL INTELLIGENCE IN HEALTHCARE: A SYSTEMATIC REVIEW OF APPLICATIONS AND CHALLENGES. International Medical Science Research Journal, 4(4), 500–508. Https://Doi.Org/10.51594/Imsrj.V4i4.1052
Habehh, H., & Gohel, S. (2021). Machine Learning In Healthcare. Current Genomics, 22(4), 291–300. Https://Doi.Org/10.2174/1389202922666210705124359
He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The Practical Implementation Of Artificial Intelligence Technologies In Medicine. In Nature Medicine (Vol. 25, Issue 1, Pp. 30–36). Nature Publishing Group. Https://Doi.Org/10.1038/S41591-018-0307-0
Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., & Wang, Y. (2017). Artificial Intelligence In Healthcare: Past, Present And Future. In Stroke And Vascular Neurology (Vol. 2, Issue 4, Pp. 230–243). BMJ Publishing Group. Https://Doi.Org/10.1136/Svn-2017-000101
Kooli, C., & Al Muftah, H. (2022). Artificial Intelligence In Healthcare: A Comprehensive Review Of Its Ethical Concerns. Technological Sustainability, 1(2), 121–131. Https://Doi.Org/10.1108/TECHS-12-2021-0029
Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., & Fotiadis, D. I. (2015). Machine Learning Applications In Cancer Prognosis And Prediction. In Computational And Structural Biotechnology Journal (Vol. 13, Pp. 8–17). Elsevier B.V. Https://Doi.Org/10.1016/J.Csbj.2014.11.005
Kumar, P., Chauhan, S., & Awasthi, L. K. (2023). Artificial Intelligence In Healthcare: Review, Ethics, Trust Challenges & Future Research Directions. In Engineering Applications Of Artificial Intelligence (Vol. 120). Elsevier Ltd. Https://Doi.Org/10.1016/J.Engappai.2023.105894
Liu, V. X. (2020). The Future Of AI In Critical Care Is Augmented, Not Artificial, Intelligence. In Critical Care (Vol. 24, Issue 1). Biomed Central Ltd. Https://Doi.Org/10.1186/S13054-020-03404-5
Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2017). Deep Learning For Healthcare: Review, Opportunities And Challenges. Briefings In Bioinformatics, 19(6), 1236–1246. Https://Doi.Org/10.1093/Bib/Bbx044
Murdoch, B. (2021). Privacy And Artificial Intelligence: Challenges For Protecting Health Information In A New Era. BMC Medical Ethics, 22(1). Https://Doi.Org/10.1186/S12910-021-00687-3
Obermeyer, Z., & Emanuel, E. J. (2016). Predicting The Future — Big Data, Machine Learning, And Clinical Medicine. New England Journal Of Medicine, 375(13), 1216–1219. Https://Doi.Org/10.1056/Nejmp1606181
Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., Liu, P. J., Liu, X., Marcus, J., Sun, M., Sundberg, P., Yee, H., Zhang, K., Zhang, Y., Flores, G., Duggan, G. E., Irvine, J., Le, Q., Litsch, K., … Dean, J. (2018). Scalable And Accurate Deep Learning With Electronic Health Records. Npj Digital Medicine, 1(1). Https://Doi.Org/10.1038/S41746-018-0029-1
Rateesh Sareen. (2021). Artificial Intelligence In Health Care: Ethical Challenges.
Reddy, S., Fox, J., & Purohit, M. P. (2019). Artificial Intelligence-Enabled Healthcare Delivery. In Journal Of The Royal Society Of Medicine (Vol. 112, Issue 1, Pp. 22–28). SAGE Publications Ltd. Https://Doi.Org/10.1177/0141076818815510
Rishabh Sharma, B. P. (2020). Artificial Intelligence In Healthcare: A Review.
Sharma, Z., Pranav, V., Chauhan, A., Ashok, L., D’Souza, A., Malarout, N., & Kamath, R. (2019). The Impact Of Artificial Intelligence On Healthcare. Indian Journal Of Public Health Research And Development, 10(8), 189–194. Https://Doi.Org/10.5958/0976-5506.2019.01876.X
Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2018). Deep EHR: A Survey Of Recent Advances In Deep Learning Techniques For Electronic Health Record (EHR) Analysis. IEEE Journal Of Biomedical And Health Informatics, 22(5), 1589–1604. Https://Doi.Org/10.1109/JBHI.2017.2767063
Tumpa, E. S., & Dey, K. (2022). A Review On Applications Of Machine Learning In Healthcare. 2022 6th International Conference On Trends In Electronics And Informatics, ICOEI 2022 - Proceedings, 1388–1392. Https://Doi.Org/10.1109/ICOEI53556.2022.9776844
Wiens, J., & Shenoy, E. S. (2018). Machine Learning For Healthcare: On The Verge Of A Major Shift In Healthcare Epidemiology. Clinical Infectious Diseases, 66(1), 149–153. Https://Doi.Org/10.1093/Cid/Cix731



