Implementasi Kalkulus Trigonometri pada Pemodelan dan Visualisasi Gelombang Stasioner Menggunakan Python

Authors

  • Roziana Fauzun Universitas Harapan Bangsa
  • Rosyid R. Al-Hakim Universitas Harapan Bangsa
  • Anggit Wirasto Universitas Harapan Bangsa
  • Hadi Jayusman Universitas Harapan Bangsa
  • Glagah E. Setyowisnu Universitas Jenderal Soedirman
  • Tri S. Famuji Universitas Al-Irsyad Cilacap

Keywords:

calculus application, standing waves, sinusoidal function, computational modeling, Python visualization

Abstract

This study explores the application of calculus concepts in computational modeling and visualization of standing waves in open and closed pipe systems. Standing wave phenomena are fundamental topics in wave physics and are closely related to sinusoidal functions commonly studied in calculus courses, particularly in Informatics education. However, the integration of calculus-based mathematical representations with computational visualization remains limited in undergraduate learning contexts. The objective of this research is to implement trigonometric calculus concepts in modeling sinusoidal standing waves and to visualize their behavior in open and closed pipes using Python-based computation. The research employs a quantitative computational approach, where mathematical wave equations derived from calculus principles are translated into numerical simulations. The study does not involve human participants; instead, data are generated from analytical wave functions and processed through computational visualization techniques using Python. The results demonstrate that the computational models successfully represent the characteristics of standing waves, including nodes and antinodes, in both open and closed pipe configurations. The visualizations clearly illustrate differences in wave patterns resulting from boundary conditions, confirming theoretical expectations from calculus-based wave equations. These findings indicate that computational modeling can effectively bridge abstract calculus concepts and observable physical phenomena. In conclusion, this study contributes a calculus-oriented computational framework that enhances conceptual understanding of standing waves through visualization. The novelty of this research lies in its explicit integration of trigonometric calculus concepts with computational simulation as a pedagogical approach in Informatics-oriented calculus learning.

References

Afnaria, A., Al-Hakim, R. R., Rachim, F., Hasibuan, A. M., Muliani, M., Nagari, G. T., Adriani, I. R., Harahap, A. Y. A., Sari, D. P., & Ekasasmita, W. (2025). Kalkulus. Get Press Indonesia.

Al Hakim, R. R., & Setyowisnu, G. E. (2021). Rancang Bangun Media Pembelajaran Matematika Berbasis Android pada Materi Kalkulus Diferensial. Prosiding Pendidikan Matematika Dan Matematika, 3, 1–6. https://doi.org/10.21831/pspmm.v3i0.133

Al Hakim, R. R., Setyowisnu, G. E., & Pangestu, A. (2020). Rancang Bangun Media Pembelajaran Matematika Berbasis Android pada Materi Persamaan Diferensial. Kontinu: Jurnal Penelitian Didaktik Matematika, 4(2), 82–91. https://doi.org/dx.doi.org/10.30659/kontinu.4.2.82-91

Das, S., & Karmakar, P. (2026). Time-resolved simulation of hybrid nano-milk flow in an electromagnetic vibration channel with parabolic thermal ramping: A Python AI approach. Chemometrics and Intelligent Laboratory Systems, 270, 105647. https://doi.org/10.1016/J.CHEMOLAB.2026.105647

Filipovich, M. J., & Hughes, S. (2022). PyCharge: An open-source Python package for self-consistent electrodynamics simulations of Lorentz oscillators and moving point charges. Computer Physics Communications, 274, 108291. https://doi.org/10.1016/J.CPC.2022.108291

Halliday, D., & Resnick, R. (2010). Fisika Dasar (7th ed., Vol. 1). Erlangga.

Handayani, I. D., & Ahmad, F. (2022). Kajian Konsep Perlayangan Gelombang Berdasarkan Hasil Komputasi Numerik. ORBITA: Jurnal Pendidikan Dan Ilmu Fisika, 8(1), 97–102. https://doi.org/10.31764/ORBITA.V8I1.8437

López-Flores, F. J., Ochoa-Barragán, R., Raya-Tapia, A. Y., Ramírez-Márquez, C., & Ponce-Ortega, J. M. (2025). Machine learning with Python. In Machine Learning Tools for Chemical Engineering: Methodologies and Applications (pp. 31–55). Elsevier. https://doi.org/10.1016/B978-0-443-29058-9.00004-5

Maskar, S., & Dewi, P. S. (2020). Praktikalitas dan Efektifitas Bahan Ajar Kalkulus Berbasis Daring Berbantuan Geogebra. Jurnal Cendekia : Jurnal Pendidikan Matematika, 4(2), 888–899. https://doi.org/10.31004/cendekia.v4i2.326

McClarren, R. G. (2018). NumPy and Matplotlib. In Computational Nuclear Engineering and Radiological Science Using Python (pp. 53–74). Elsevier. https://doi.org/10.1016/B978-0-12-812253-2.00005-4

Niskanen, M., & Lähivaara, T. (2023). COMPOSTI: A Python-based program for seismic trans-dimensional inversion. SoftwareX, 21, 101298. https://doi.org/10.1016/J.SOFTX.2022.101298

Pratiwi, I., Nugroho, H. S., Supardi, Putri, S. A., Chen, D., Suryani, R., & Al-Hakim, R. R. (2025). Cross-platform Data Visualization of Acoustic Phenomena in Open and Closed Pipe Resonance Using Python and Microsoft Excel. Journal of Aceh Physics Society, 14(4), 28–36. https://doi.org/10.24815/jacps.v14i4.47388

Squire, J. C., & English, A. E. (2025). Introduction to Python. In Introduction to Python and Spice for Electrical and Computer Engineers (pp. 1–48). Elsevier. https://doi.org/10.1016/B978-0-443-19007-0.00001-5

Sukhdeve, Dr. S. R., & Sukhdeve, S. S. (2023). Google Colaboratory. In Google Cloud Platform for Data Science (pp. 11–34). Apress. https://doi.org/10.1007/978-1-4842-9688-2_2

Zheng, D., Peng, X., Huang, Y., Wang, Y., Zhang, D., Huang, Z., Cai, Z., Zhang, L., Chen, M., Xu, B., & Zhou, W. (2026). Integrating deep-learning-based magnetic model and non-collinear spin-constrained method: methodology, implementation and application. Npj Computational Materials, 12, 52-. https://doi.org/10.1038/s41524-025-01923-9

Published

31-01-2026

How to Cite

Fauzun, R., Al-Hakim, R., Wirasto, A., Jayusman, H., Setyowisnu, G., & Famuji, T. (2026). Implementasi Kalkulus Trigonometri pada Pemodelan dan Visualisasi Gelombang Stasioner Menggunakan Python. Jurnal Kolaborasi Riset Sarjana, 3(1), 8–15. Retrieved from https://ejournal.uhb.ac.id/index.php/korisa/article/view/1985

Similar Articles

You may also start an advanced similarity search for this article.