Sistem Pendukung Keputusan untuk Klasifikasi Risiko Diabetes Menggunakan Algoritma Decision Tree

Authors

  • Hafizah Zuriyat Tayyibah Universitas Harapan Bangsa
  • Toat Tuloh
  • Khoirun Nisa
  • Glagah Eskacakra Setyowisnu Universitas Jenderal Soedirman
  • Rosyid Ridlo Al-Hakim Universitas Harapan Bangsa
  • Esa Rinjani Cantika Putri Universitas Terbuka

Keywords:

decision tree, diabetes mellitus, artificial intelligence, classification, health risk

Abstract

Diabetes mellitus is a chronic metabolic disease that requires early diagnosis to prevent serious complications. This study aims to develop a diabetes risk classification model using the Decision Tree algorithm, based on a Kaggle dataset consisting of 520 patient records with 17 clinical and demographic features. The evaluation results show that the proposed model performs well, achieving an accuracy of 95.19%, precision of 1.00, recall of 0.93, and an F1-score of 0.96 for the positive class. These results outperform six previous studies that employed algorithms such as C4.5, SVM, Adaboost, KNN, and Naïve Bayes, both in terms of accuracy and sensitivity in detecting diabetes cases. In addition to its strong performance metrics, the study highlights the model’s interpretability through a visualized decision tree, enabling healthcare professionals to better understand the classification logic. With broader attribute coverage and comprehensive performance evaluation, the model is considered effective and suitable for developing accurate and transparent decision support systems for early diabetes diagnosis.

References

Abdurrahman, G. (2022). Jurnal Sistem dan Teknologi Informasi Klasifikasi Penyakit Diabetes Melitus Menggunakan Adaboost Classifier. JUSTINDO (Jurnal Sistem Dan Teknologi Informasi), 7(1), 59–66. http://jurnal.unmuhjember.ac.id/index.php/JUSTINDO

Camerlingo, N., Vettoretti, M., Del Favero, S., Facchinetti, A., Choudhary, P., & Sparacino, G. (2022). Generation of Post-Meal Insulin Correction Boluses in Type 1 Diabetes Simulation Models for In-Silico Clinical Trials: More Realistic Scenarios Obtained using a Decision Tree Approach. Computer Methods and Programs in Biomedicine, 221, 106862. https://doi.org/10.1016/j.cmpb.2022.106862

Charbuty, B., & Abdulazeez, A. (2021). Classification Based on Decision Tree Algorithm for Machine Learning. Journal of Applied Science and Technology Trends, 2(01), 20–28. https://doi.org/10.38094/jastt20165

Fadhillah, R. P., Rahma, R., Sepharni, A., Mufidah, R., Sari, B. N., & Pangestu, A. (2022). Klasifikasi Penyakit Diabetes Mellitus Berdasarkan Faktor-Faktor Penyebab Diabetes menggunakan Algoritma C4.5. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 7(4), 1265–1270. https://doi.org/10.29100/jipi.v7i4.3248

Hardianto, D. (2021). Telaah Komprehensif Diabetes Melitus: Klasifikasi, Gejala, Diagnosis, Pencegahan, dan Pengobatan. Jurnal Bioteknologi & Biosains Indonesia (JBBI), 7(2), 304–317. https://doi.org/10.29122/jbbi.v7i2.4209

Indrayanti, Devi Sugianti, & M. Adib Al Karomi. (2017). Optimasi Parameter K Pada Algoritma K-Nearest Neighbour untuk Klasifikasi Penyakit Diabetes Mellitus. Prosiding Seminar Nasional Teknologi Dan Informatika, 4, 823–830.

Mucholladin, A. W., Bachtiar, F. A., & Furqon, M. T. (2021). Klasifikasi Penyakit Diabetes menggunakan Metode Support Vector Machine. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(2), 622–633. http://j-ptiik.ub.ac.id

Nurussakinah, N., & Faisal, M. (2023). Klasifikasi Penyakit Diabetes Menggunakan Algoritma Decision Tree. Jurnal Informatika, 10(2), 143–149. https://doi.org/10.31294/inf.v10i2.15989

Ratre, B., Patel, D., Patel, D., Patel, H., Patel, S., & Singh, D. (2024). Review Paper for Diabetes Mellitus. International Journal of Advanced Multidisciplinary Research and Studies, 4(6), 927–931. https://doi.org/10.62225/2583049X.2024.4.6.3534

Ridwan, A. (2020). Penerapan Algoritma Naïve Bayes untuk Klasifikasi Penyakit Diabetes Mellitus. Jurnal SISKOM-KB (Sistem Komputer Dan Kecerdasan Buatan), 4(1), 15–21. https://doi.org/10.47970/siskom-kb.v4i1.169

Sadiq, I. Z., Katsayal, B. S., Ibrahim, B., Ibrahim, M., Hassan, H. A., Ghali, U. M., Usman, A. G., Usman, A., & Abba, S. I. (2025). Data-Driven Diabetes Mellitus Prediction and Management: A Comparative Evaluation of Decision Tree Classifier and Artificial Neural Network Models Along with Statistical Analysis. Scientific Reports, 15(1), 19339. https://doi.org/10.1038/s41598-025-03718-w

Sriyati, S. (2024). Neuropati Diabetes Sebagai Faktor Predisposisi Terjadinya Luka Pada Kaki. Jurnal Ilmiah STIKES Yarsi Mataram, 14(1), 46–52. https://doi.org/10.57267/jisym.v14i1.336

Thakur, R., . M., Sharma, P., & . D. (2023). Diseases Prediction Using Classification Algorithm. International Journal for Research in Applied Science and Engineering Technology, 11(8). https://doi.org/10.22214/ijraset.2023.55194

Published

2025-08-19

How to Cite

Tayyibah, H. Z., Tuloh, T., Nisa, K., Setyowisnu, G., Al-Hakim, R., & Putri, E. (2025). Sistem Pendukung Keputusan untuk Klasifikasi Risiko Diabetes Menggunakan Algoritma Decision Tree. Jurnal Kolaborasi Riset Sarjana, 2(3), 9–19. Retrieved from https://ejournal.uhb.ac.id/index.php/korisa/article/view/1895